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Cross-layer Analysis of the End-to-end Delay
Distribution in Wireless Sensor Networks

Yunbo Wang Mehmet C. Vuran Steve Goddard

Abstract—Emerging applications of wireless sensor networks
(WSNs) require real-time quality of service (QoS) guarantees to
be provided by the network. Due to the non-deterministic impacts
of the wireless channel and queuing mechanisms, probabilistic
analysis of QoS is essential. One important metric of QoS in
WSNs is the probability distribution of the end-to-end delay.
Compared to other widely used delay performance metrics such
as the mean delay, delay variance, and worst-case delay, the
delay distribution can be used to obtain the probability to meet
a specific deadline for QoS-based communication in WSNs.

To investigate the end-to-end delay distribution, in this paper,
a comprehensive cross-layer analysis framework, which employs
a stochastic queueing model in realistic channel environments, is
developed. This framework is generic and can be parameterized
for a wide variety of MAC protocols and routing protocols.
Case studies with the CSMA/CA MAC protocol and an anycast
protocol are conducted to illustrate how the developed framework
can analytically predict the distribution of the end-to-end delay.
Extensive testbed experiments and simulations are performed to
validate the accuracy of the framework for both deterministic
and random deployments. Moreover, the effects of various
network parameters on the distribution of end-to-end delay are
investigated through the developed framework. To the best of
our knowledge, this is the first work that provides a generic,
probabilistic cross-layer analysis of end-to-end delay in WSNs.

I. INTRODUCTION

Wireless sensor networks (WSNs) have been utilized in
many applications as both a connectivity infrastructure and a
distributed data generation network due to their ubiquitous and
flexible nature [6]. Increasingly, a large number of WSN appli-
cations require real-time quality of service (QoS) guarantees
[5]. Such QoS requirements usually depend on two common
parameters: timing and reliability. The resource constraints of
WSNs, however, limit the extent to which these requirements
can be guaranteed. Furthermore, the random effects of the
wireless channel prohibits the development of deterministic
QoS guarantees in these multi-hop networks. Consequently, a
probabilistic analysis of QoS metrics is essential to address
both timing and reliability requirements. In this work, we
focus on the probability distribution of the end-to-end delay
in WSNs. Characterization of the end-to-end delay distribution
is fundamental for real-time communication applications with
probabilistic QoS guarantees. Indeed, the cumulative distribu-
tion function (cdf) of the delay for a given deadline can be
used as a probabilistic metric for reliability and timeliness.

Characterizing delay in distributed systems has been in-
vestigated in different contexts. Recent work has analyzed
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the latency performance of WSNs in terms of its first order
statistics, i.e., the mean and the variance [3, 8, 15]. How-
ever, complex and cross-layer interactions in multi-hop WSNs
require a complete stochastic characterization of the delay.
Several efforts have been made to provide probabilistic bounds
on delay. As an example, the concept of Network Calculus
[10] has been extended to derive probabilistic bounds for
delay through worst case analysis [9, 12]. However, because
of the randomness in wireless communication and the low
power nature of the communication links in WSNs, worst
case analysis cannot capture the stochastic behavior of end-
to-end delay. Moreover, work on real-time queueing theory
[19, 38] provides stochastic models for unreliable networks.
However, these models consider heavy traffic rate, which is not
applicable for WSNs. Recently, probabilistic analysis of delay
has been performed for broadcast networks [7, 25, 28, 29, 31]
considering several medium access control (MAC) protocols.
While the channel contention has been adequately modeled in
these studies, additional delay due to multi-hop communica-
tion, queuing delay, and wireless channel errors have not been
captured. Capturing these cross-layer effects is imperative to
completely characterize the delay distribution in WSNs.

Our goal is to provide a comprehensive analytical model for
distribution of end-to-end delay in WSNs. Accordingly, the
contributions of this paper are as follows: First, a comprehen-
sive and accurate cross-layer analysis framework is developed
to characterize the end-to-end delay distribution in WSNs for
both deterministic and random deployments of nodes. Second,
the effects of heterogeneity in WSNs on latency is captured
in terms of channel quality, transmit power, queue length,
and communication protocols. Third, the developed framework
highlights the relationships between network parameters and
the delay distribution in multi-hop WSNs. Using this frame-
work, real-time scheduling, deployment, admission control,
and communication solutions can be developed to provide
probabilistic QoS guarantees. To the best of our knowledge,
this is the first work that provides a probabilistic cross-layer
analysis of end-to-end delay in WSNs. 1

The remainder of this paper is organized as follows: Related
work in this area is summarized in Section II. In Section III,
the end-to-end delay distribution problem is formally defined,
and an overview of the proposed Markovian model is provided.
The detailed derivation of the single-hop delay distribution is
described in Section IV, followed by the derivation of the
end-to-end delay distribution in Section V. Then, case studies
for the CSMA/CA MAC protocol and the anycast protocol
are provided in Section VI and Section VII, respectively.
Experimental results are provided in Section VIII to validate

1A preliminary version of this work appeared in [34].
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the developed model. Finally, Section IX concludes the paper.

II. RELATED WORK

The problem of probabilistic QoS guarantees has attracted
a large amount of research in recent years. The concept of
Network Calculus [10] has been extended to support prob-
abilistic delay bounds in [9, 12, 18, 30]. Network calculus
and its probabilistic extensions are based on a min-plus
algebra to provide traffic curves and service curves, which are
deterministic (or statistical) bounds of traffic rate and service
time, respectively. In these studies, the worst case performance
bounds are analyzed. However, determining worst case bounds
has limited applicability in WSNs for three reasons: First,
because of the randomness in wireless communication and
the low power nature of the communication links, worst case
bounds do not exist in most practical scenarios. Second, the
large variance in the end-to-end delay in WSNs results in
loose bounds that cannot accurately characterize the delay
distribution. Finally, most applications tolerate packet loss for
a lower delay of higher priority packets since the efficiency
of the system is improved. These motivate the need for
probabilistic delay analysis rather than worst case bounds.

Moreover, work on real-time queueing theory [19, 38]
combines real-time theory and queueing theory to provide
stochastic models for unreliable networks. However, these
models consider heavy traffic rate (usually saturation mode),
which is not applicable for WSNs. Our approach in this
paper is similar to real-time queueing theory [19] in that we
use a stochastic queuing model for the analysis. In contrast,
we do not focus on the scheduling problem in real-time
systems, which has been discussed intensively in the literature
[19, 21, 38]. Rather, we aim to provide an analytical tool to
help develop communication solutions and real-time systems.

Recently, the delay distribution of MAC protocols has been
analyzed in several studies for wireless networks and WSNs,
in particular. The access delay of several MAC protocols
has been investigated including IEEE 802.11b DCF protocol
[2] in [7, 29, 31], IEEE 802.15.4 protocol in [27, 28],
and TDMA protocols in [25]. However, in these studies, a
broadcast network is considered, where each node can hear
the transmission of each other. Moreover, in [7, 29, 31],
saturated traffic is considered. Consequently, the multi-hop
communication effects due to hidden node problems and the
low traffic rate of WSNs cannot be captured.

The distribution of link layer retransmissions are modeled in
[16]. While the distribution of the number of retransmissions
is obtained, the transmission time is regarded as the same for
each attempt. Hence, the resulting delay distribution model
does not consider the uncertainty due to random backoffs of
CSMA/CA protocols. In [37], the end-to-end delay distribution
in a linear network is derived for homogeneous networks.
However, this model assumes infinite queue length at each
node, which may not be practical considering the resource
constraints of sensor nodes. A probabilistic end-to-end delay
and network lifetime analysis is given for WSNs performing
data aggregation in [13], but with the assumption that packet
transmission time is exponentially distributed. This assumption

is inaccurate for most of the MAC protocols commonly in use.
Finally, in [11, 14, 26], empirical measurements are used to
provide probabilistic estimations for end-to-end delay. These
solutions exploit on-the-fly measurements but do not provide
analytical results. It can be observed that completely and
accurately characterizing end-to-end delay in WSNs is still
an open problem.

A preliminary version of this work appeared in [34], which
constitutes the first step in providing a comprehensive an-
alytical model for distribution of the end-to-end delay in
WSNs. In this paper, we extend our previous work in the
following aspects. The analytical framework proposed in [34]
characterizes the end-to-end delay distribution for a variety
of MAC protocols including the TinyOS CSMA/CA MAC
protocol. The model is extended to capture a wide variety
of MAC protocols with duty cycle operation and a case study
with an anycast protocol is included. Moreover, considering
the various deployment methodologies in WSN applications,
both deterministic and random network topologies are ana-
lyzed. Comprehensive testbed experiments and simulations are
provided to validate the extended model. In the following, we
present the extended analysis framework in more detail.

III. PROBLEM DEFINITION AND SYSTEM MODEL

In our analysis, we consider a network composed of sensor
nodes that are distributed in a 2-D field. Sensor nodes report
their readings to a sink through a multi-hop route in the
network. Two different types of network deployments are
investigated.
• Deterministic deployment: Sensor nodes are located at

deterministic locations. Each node is labeled by an index
i, and is characterized by its input traffic rate, λi, queue
length, Mi, and the maximum number of retransmission
attempts, χi.

• Random deployment: The locations for individual sensor
nodes are located randomly according to a Poisson point
process. In this case, nodes are identified according to
their locations rather than deterministic indices. The input
traffic rate, queue length, and the maximum number of
retransmission attempts for a node located at x = (x, y)
is denoted as λx, Mx, and χx, respectively.

Although any channel model can be used in our framework,
in this paper, a log-normal fading channel model is considered
for its accuracy [39] . Accordingly, for a given network with a
certain MAC protocol and node parameters described above,
we are interested in the following two problems:

1) What is the probability distribution function (pdf) of
single-hop delay, fsh(i,j)(t), between two nodes i and j
for deterministic deployment, and fsh(x1,x2)(t), between two
nodes located at x1 and x2 for random deployment, for a new
arriving packet?

2) Given the single-hop delay pdf, what is the end-to-
end delay pdf, fe(i,s)(t) between a node i and a sink s
for deterministic deployment, and fe(x,xs)(t) between a node
located at x and a sink located at xs for random deployment?

We consider a heterogeneous network for this analysis,
where the heterogeneity is defined in terms of channel con-
ditions, the packet error rate, PER, traffic rate, λ, queue
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length, M , maximum number of retransmission attempts, χ,
and transmission power, P tx, with appropriate subscripts indi-
cating the different values for different nodes. In the following,
we provide an overview of our solutions for the two problems
above and the detailed descriptions are deferred to Sections
IV-V.

A. Single-hop Delay Distribution

Each node is modeled according to a queuing model, which
is characterized by its interarrival distribution and service
process. More specifically, we model the traffic interarrival
according to a geometric distribution as will be explained
next. Furthermore, a Discrete Time Markov Process (DTMP)
is used to model the service behavior. Therefore, the service
time is Phase-Type (PH) distributed [24]. Considering a single
processor at each node and a queue capacity of M , the
resulting model is a discrete time Geom/PH/1/M queueing
model.

1) Inter-arrival time: The geometric inter-arrival time is
motivated by the following: In a typical multi-hop WSN,
the input traffic at each node consists of two parts: locally
generated packets and relay packets. Locally generated packets
consist of the local information sampled by the sensors,
whereas relay packets are received from the neighbors of the
node. We are interested in finding the inter-arrival time of these
packets at each node for our analysis.

The inter-arrival time of the locally generated packets de-
pends on the application requirements, with which the sensor
data are generated. For monitoring applications, where nodes
repeatedly poll their sensors, the generated data is periodic.
Accordingly, the locally generated traffic can be modeled using
a constant bit rate (CBR) model. For event-based applications,
nodes send data only if a certain physical event of interest
occurs, e.g., the temperature exceeds a given threshold. In this
case, the generated data are often sporadic. Considering such
physical events do not occur very frequently, the probability
that the event occurs at any time is governed by a Poisson
process, and the inter-arrival time is exponentially distributed.
Since we employ a discrete time model, the Poisson process
is equivalent to a Bernoulli process and the exponential
distribution of inter-arrival time is equivalent to a geometric
distribution [23]. Note that in some applications, the traffic
generated for the physical event can be bursty. For tractability,
the bursty traffic pattern is not considered in this paper, and
is left for future work.

While the locally generated traffic mainly depends on the
physical phenomena of interest and the application type, the
relay traffic depends on the network parameters. Although
characterization of the relay traffic is out of the scope of this
paper, we approximate this distribution based on empirical
measurements. Testbed experiments have been performed to
estimate the distribution of the inter-arrival time of packets in
a 10-hop chain network for both types of applications, i.e.,
monitoring and event-based for low and high traffic rates.
In each experiment, each node uses the TinyOS CSMA/CA
MAC protocol and generates packets according to either a
CBR model (monitoring) or a Poisson process (event-based).
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Fig. 1. The distribution of inter-arrival time for different types of traffic for
a 10-hop chain. Low traffic: 0.4 packets/s and high traffic: 4 packets/s.

Each node transmits its generated packets and the received
packets from its neighbors to the next node toward the end
of the chain. The distribution of the inter-arrival time of the
packets is recorded at the end of the chain. The empirical
cdf of the inter-arrival time is shown in Fig. 1 along with
an exponential distribution model for four cases2. The results
reveal that except for the low periodic traffic case shown in Fig.
1(a), exponential distribution closely models the inter-arrival
rate. Accordingly, in our discrete-time model, we consider
that the inter-arrival time follows a geometric distribution, and
define the traffic rate λ at a node to be the probability that a
new locally generated packet or relay packet arrives during a
time unit Tu.

2) Service Time: The service time of each node is Phase-
Type (PH) distributed since the system is modeled according
to a discrete-time Markov process (DTMP) with time unit,
Tu. Since a Bernoulli arriving process is assumed for packets
and the DTMP is used to describe the behavior of packet
communication service, the system is essentially governed by
a quasi-birth-death (QBD) process [24] and is modeled by a
Geom/PH/1/M queue.

The communication system at each node is modeled as a
discrete-time recurrent Markov chain, {Xn}. As shown in Fig.
2(a), this DTMC has a layered structure. Each layer i contains
the part of the chain where there are i packets in the queue.
The communication behaviors of each node are represented
by transitions among states in {Xn}. Then, a second DTMC,
{Yn}, which is the absorbing variant of {Xn}, is used to obtain
the single-hop delay distribution. The detailed explanation of
these DTMCs is provided in Section IV.

B. End-to-end Delay Distribution

With each hop modeled as a Geom/PH/1/M queue, the
entire network is considered as a queueing network. Nodes
are interrelated according to the traffic constraints. More
specifically, the successfully transmitted traffic rate from one

2The exponential distributions shown in Fig. 1 are chosen such that their
means are equal to the measured mean inter-arrival times.
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Fig. 2. The structures of Markov chains are shown in (a) for {Xn} and (b)
for {Yn}. The common structure of blocks {Zn} and {In} are shown in (c)
and (d).

node should be equal to the sum of the incoming relay traffic
rate at each of the next-hop neighbors of the node.

The topology of the queueing network depends on the
routing protocol used. In this paper, we focus on the class
of routing protocols with which each node maintains a proba-
bilistic routing table for its neighbors, e.g., Geographic routing
protocols [4]. Nodes relay their packets to each of their
neighbors according to a probability in their routing tables. By
first calculating the relaying traffic and the single hop delay
distribution for each pair of nodes, the end-to-end delay is
obtained using an iterative procedure as will be explained in
Section V.

IV. SINGLE-HOP DELAY DISTRIBUTION

The communication system at each node i is modeled by a
DTMC {Xn}i and its absorbing variant {Yn}i. For clarity,
the index i is omitted in single-node contexts when there
is no ambiguity. First, {Xn} is constructed to capture the
equilibrium behavior of the communication. Then, {Yn} is
used to analyze the transient communication behavior after
a specific packet arrives. The single-hop delay of the packet
communication is then represented as the absorption time of
{Yn}. In the following, the construction of {Xn} and {Yn}
are described in detail and the single-hop delay distribution is
derived according to Theorem 1 at the end of this section.

A. Constructing Markov Chain {Xn}
The DTMC, {Xn}, as shown in Fig. 2(a), is composed of

M + 1 layers, where each layer m (0 ≤ m ≤ M ) represents

the state where there are m packets in the queue and M is
the queue capacity. These layers are of two different types,
the idle layer, {In}, and the communication layers, {Cn}m,
each of which consists of one or more states. The states and
the transitions among the states in each layer is determined by
the protocols used by each node, and represent the operations
conducted by the nodes according to the protocols. Case
studies are presented in Section VI and VII for the TinyOS
CSMA/CA protocol and an anycast protocol. The idle layer,
{In}, (m = 0) represents the idle process, during which the
node does not have any packet to send, and waits for new
packets. The communication layers, {Cn}m (m > 0), represent
the communication process in which packets are transmitted.
One or several transmission attempts are conducted, until
either the packet is successfully transmitted, or the maximum
number of transmission attempts, χ, is exceeded. Accordingly,
a layer m in {Xn} is denoted as {Cn}m, and is composed of
χ blocks. The b-th block in layer m is denoted as {Zn}m,b3.
As shown in Fig. 2(c), each block models a single transmission
attempt. The structure of {Zn} depends on the MAC protocol
used. Packets are dropped if they arrive at a full queue or if
all χ transmission attempts fail. Consequently, the v-th state
in layer m and transmission attempt b is denoted as Sm,b,v .

The traffic arriving at each node contains locally generated
traffic and relay traffic. While locally generated traffic can
arrive at any time, the relay traffic can only arrive when the
node is listening. Therefore, the total traffic rate depends on
the state of the process. The locally generated traffic rate
and the relay traffic rate for a node are denoted as λl and
λr, respectively. Therefore, in the states where the node is
listening, the total traffic rate is λl+λr, and it is λl otherwise.

According to the MAC protocol employed, {In} and {Cn}
are respectively parameterized by the following notations:

• PI and PC : the transition probability matrix among the
states in {In} and {Cn}.

• αI and αC : the initial probability vector for {In} and
{Cn}.

• tsI and tsC : the probability vector from each state in
{In} and {Cn} to complete the idle process and the
transmission process successfully.

• tfC : the probability vector from each state in {Cn} to
complete the transmission process unsuccessfully.

• λI and λC : the packet arrival probability vector for each
state in {In} and {Cn}. Each element in the vector is the
probability of a new packet arrival in a time unit when
the process is in the corresponding state.

Each communication layer {Cn} consists of Markov chain
blocks for each transmission attempt, {Zn}, which is further
characterized by the transition probability matrix PZ , the
initial probability vector αZ , the success probability vector tsZ ,
the failure probability vector tfZ , and packet arrival probability
vector λZ .

Accordingly, the transition probability matrix among the
states in a single layer {Cn} in {Xn} can be organized as

3In the following, we drop the indices m and b, where appropriate, to
simplify the notation.
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rows and columns of blocks:

PC =


PZ tfZαZ 0

. . . . . .
PZ tfZαZ

0 PZ

 , (1)

where the number of PZ blocks in PC is equal to χ, i.e, the
maximum number of attempts for each packet transmission.
Similarly, the initial probability vector, αC , and the probability
vectors, tsC and tfC to complete a layer in success and failure
are respectively organized as

αC =
[
αZ 0 · · · 0

]
(2)

tsC =
[
tsZ tsZ · · · tsZ

]T
(3)

tfC =
[
0 0 · · · tfZ

]T
. (4)

Note that since the idle layer does not have multiple
attempts like the communication does, there is no similar
organized internal pattern in the corresponding matrices and
vectors for {In}. The states and the transitions related to {In}
and {Zn} depend on the MAC protocol employed. For now,
we assume that these matrices are known and the case studies
to obtain them for two different protocols are provided in
Section VI and Section VII. The transition probability matrix,
QX , of the entire Markov chain {Xn} can then be found
according to transitions between different states at each layer
as explained next.

For layer m, 1 ≤ m ≤ M − 1, the queue is not full.
Whenever a packet arrives, the process transits to a higher
layer since the queue length increases. The probabilities of
such transitions are governed by the probability matrix

Au = (1λC)T ⊗ PC , (5)

where 1 is a properly dimensioned matrix containing all
1’s, and ⊗ is the entry-wise product operator. λC and PC
are parameterized according to the MAC protocol. Note that
element (v, v′) inAu represents the transition probability from
the vth state in previous layer to the v′th state in the upper
layer, and other transition probability matrices in the following
are defined the similar way. The transition probability matrix
at the same level m, 1 ≤ m ≤M − 1, is

As = (1λC)T ⊗ (tCαC) + (1− 1λC)T ⊗ PC , (6)

where tC = tsC + tfC is the probability vector from each layer
to complete the current communication process regardless of
success or failure. The first term in (6) captures the case where
a locally generated packet arrives at the same time unit in
which a packet service is completed. The second term in (6) is
for the case where neither service completion nor new packet
arrival occurs during the time unit.

At layer m = M , the queue is full. Hence, new arriving
packets are directly dropped. Therefore, the transition proba-
bility matrix in this layer is Au +As.

When there is no packet arrival and the current packet
service is completed, the Markov chain transits to one layer

below. The transition probability matrix from level m + 1 to
level m, 1 ≤ m ≤M − 1 is

Ad = (1− 1λC)T ⊗ (tCαC). (7)

The transition probabilities are similar when the idle layer
is involved as shown below:

Au0 = λT
IαC , (8)

Ad0 = (1− 1λC)T ⊗ tCαI , (9)

As0 = (1− 1λI)
T ⊗ (PI + tsIαI). (10)

When a new packet arrives while there is no packet in the
system, the chain transits from the idle layer to layer 1
according to Au0 in (8). When the service is completed for
the only packet in the system and no new packet arrives, the
chain transits from layer 1 to the idle layer according to Ad0

in (9). Finally, the transition probabilities with which the node
stays in the idle layer are given in As0 in (10).

Using (5)-(10), the transition probability matrix QX for the
entire recurrent Markov chain {Xn}, can be constructed as
follows:

QX =



layer 0 1 2 · · · M

0 As0 Au0 0
1 Ad0 As Au

2 Ad
. . . . . .

· · ·
. . . As Au

M 0 Ad As +Au

, (11)

where each non-zero block corresponds to the transition
probability among all layers. The duration of the time unit
Tu is chosen to be small enough such that the probability
of having two or more transitions in a single time unit is
negligible. Therefore, it is only possible for {Xn} to have
intra-layer transitions and inter-layer transitions to adjacent
layers. Also note that the first row and column of blocks in
QX corresponds to the transition probabilities from and to the
idle layer. Then, the equilibrium state probability vector, π,
for {Xn} is calculated by solving πQX = π and

∑
i πi = 1.

The detailed solution to this equation system is documented
in [34].

B. Absorbing Time for {Yn}
To obtain the distribution of single-hop delay for a packet,

consider a particular packet that enters the system at time t =
t0. The single-hop delay of the packet is the time spent until it
is transmitted or dropped. To derive the delay distribution, we
use another DTMC, {Yn}, as an absorbing variant of {Xn}. As
shown in Fig. 2(b), in {Yn}, the idle layer of {Xn} is replaced
by two absorbing states Ssucc and Sfail, corresponding to the
two cases where the packet is successfully transmitted and
dropped, respectively. In addition, all new packet arrivals are
ignored since they do not interfere with the service time of the
packet concerned. Thus, the state transitions occur only inside
a layer or from layer m + 1 to m. The steps to obtain {Yn}
from {Xn} is explained in the following.

Before the packet arrives, the system is in one of the states
according to the equilibrium state probability vector, π. After
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the new packet arrives, if the queue is full, the packet is
immediately dropped. The probability of queue full is

pqf = πMAu1, (12)

where πM is the sub-vector in π corresponding to the M -th
layer. Otherwise, the packet is inserted into the queue. The
probability vector that the node is in a specific state after the
new packet arrives is π′ = πQup

Y , where Qup
Y is the transition

probability matrix of {Yn} conditioned on the fact that the new
packet arrives. Qup

Y is derived from QX in (11) by replacing
λI and λC with vectors of all 1’s in (5)-(10) and replacing
As + Au with As. Note that Au in the bottom-right block
accounts for the transition that will cause a packet to drop
because of a full queue. Then, π′ is the initial probability
vector for {Yn}.

Accordingly, the transition probability matrix for {Yn} is

QY =

 1 0 0
0 1 0

tsY tfY PY

 , (13)

where the transition probabilities from and to the absorbing
states Ssucc and Sfail are listed in the first two rows and
columns. The transition probability matrix among the transient
states, i.e., all states except Ssucc and Sfail, is given by

PY =


PC 0
tCαC PC

. . . . . .
0 tCαC PC

 . (14)

This is obtained from (11) by removing the first row and first
column of blocks, and replacing λI and λC with vectors of
all 0’s in (5)-(10) for each remaining block. The transition
probability vectors from each of the transient states to the
absorbing states are

tsY =
[
tsC 0 0 · · ·

]T
, tfY =

[
tfC 0 0 · · ·

]T
,

(15)
respectively, where tsC and tfC are given in (3) and (4). Finally,
since a transition in {Yn} takes a time unit Tu, the following
important results are directly obtained:

Theorem 1. The pmf of the number of time units, k, a packet
should wait before being transmitted and dropped are

fsK(k) = αY P
k−1
Y tsY , ffK(k) = αY P

k−1
Y tfY , (16)

respectively, where αY = (π′1,π
′
2, · · · ,π′M ), i.e., π′ without

the elements corresponding to the idle layer, and P k−1
Y

represents the (k − 1)-th power of PY .

Proof: The theorem follows from [23, Ch. 9.5].
The pmf of the number of time units a packet should wait,

regardless of being transmitted and dropped, is obtained by
adding fsK(k) and ffK(k). Thus, the following corollary is
directly obtained.

Corollary 1. The pmf of single-hop delay, measured by the
number of time units of Tu, is given by

fK(k) = αY P
k−1
Y tY . (17)

Using this model, the probability that the packet is eventu-
ally delivered in success can also be found, and is given by
the following corollary:

Corollary 2. The delivery rate of a new arriving packet is

pdeli =

+∞∑
k=1

fsK(k) = αY (I − PY )−1tsY . (18)

Of interest, the first two moments of the successful single-
hop delay, which are widely used as the performance metrics
in WSN applications, can also be derived.

Corollary 3. The mean and variance of single-hop delay for
a new arriving packet are given by

µK = αY (I − PY )−2tsY /pdeli, (19)

σ2
K =

αY (2(I − PY )−3 − (I − PY )−2)tsY
pdeli

− µ2
K . (20)

The derivations are straightforward and are not included.
Next, we derive the end-to-end delay distribution based on
the single-hop delay distribution analysis in this section.

V. END-TO-END DELAY DISTRIBUTION

The end-to-end delay distribution depends on the topology
of the network and the routing protocol used. Two types of
node deployments are considered in this paper: deterministic
deployment and random deployment. For both deployments,
we focus on the steady state behavior of the routing protocol.
Accordingly, a node forwards a particular packet to any of
its neighbor nodes with a certain probability, which does
not change rapidly over time. These protocols comprise the
majority of routing protocols in WSNs [6]. It is also assumed
that in-network processing, such as data aggregation, is not
employed.

A. Deterministic Deployment

In a network with deterministic deployment, each node has a
deterministic location and the forwarding probabilities among
nodes is determined with the knowledge of the locations. A
typical network setup for common applications is considered,
where a single sink is used and the routing protocol produces
no closed loops in the routing paths (i.e., packets are never
routed by a node more than once). In such a case, the network
is viewed as a directed acyclic graph (DAG). Without loss of
generality, this graph can be topologically sorted so that a node
with a larger index never transmits a packet to a node with
smaller index. In a network with N nodes, the index for the
sink s is N .

Suppose in each time unit of Tu, each node i generates a
local traffic of λli to the sink. Each packet is routed using a
relay k ∈ Ni with probability pfwi,k , where Ni is the set of
potential relays from i to the sink. Thus,

∑
k∈Ni

pfwi,k = 1,
∀i. We first calculate the average relay traffic λ̄ri in each time
unit from node i by solving the following equation system for
every node:

λ̄ri =

i−1∑
j=1

(λ̄rj + λlj)p
fw
j,i pdeli,j,i, ∀i, (21)
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Fig. 3. The feasible region, FA, and the infeasible region, BA, of node A.

and λ̄r1 = 0, where pdeli,j,i is the probability that a packet is
successfully delivered from node j to i, as defined in (18).
Then, since each node cannot receive packets in transmission
and sleeping states, the relay traffic rate in the states, in which
the node is capable to receive packets, is

λri = λ̄ri /π
listen
i , (22)

where πlisteni is the probability that i is in any state in
which the node can receive packets, and is the sum of the
probabilities corresponding to all such states in πi. Whether
or not the node can receive packets in a state is determined by
the protocol. Accordingly, the input traffic rate vectors λI and
λC of a node i can be found according to Section IV. Then,
λI and λC are used in (5)-(10) to determine the single-hop
delay distribution, fsh(i,j)(t), between a pair of nodes i and j
as discussed in Section IV.

Finally, the end-to-end delay distribution is given as

fe(i,s)(t) =

N−1∑
k=i+1

fsh(i,k)(t) ∗ fe(k,s)(t)pfwi,k + fsh(i,N)(t)p
fw
i,N ,

(23)

where (∗) is the convolution operator. Our numerical ex-
periments show that it takes less than 2 minutes to obtain
the end-to-end delay distribution between two nodes in a
network consisting of 16 nodes with TinyOS CSMA/CA
MAC protocol. This calculation time is affordable for protocol
analysis.

B. Random Deployment

For the random deployment, the nodes are located in the
network according to a Poisson point process with density
ρ. Due to this randomness, the location for each node is
stochastic. Therefore, geographic routing protocols [4] are
often used due to their scalability and adaptability to the
random geographic locations of the nodes. In such protocols,
instead of the routing probability pfwi,j between any pair of
nodes i and j, the routing probability between any pair of
locations xA and xB , pfwxA,xB

can be determined.
A common scenario is also considered for the random

deployment, where the nodes in the network generate homo-
geneous amount of local traffic to a sink. Moreover, each node
forwards packets to the neighboring nodes within its feasible
region, FA, i.e., the region in which nodes are closer to the
sink, but are still in the transmission range, as shown in Fig.
3. Assume that the sink is located at the center of a circular
plane with a radius R. In this scenario, the end-to-end delay
analysis can take advantage of the symmetry of the topology
as explained next.

The entire circular plane is discretized into concentric rings
indexed by their distance to the sink, r. Each node senses the
physical events, and generates packets with traffic rate λl. By
symmetry, the relay traffic λrr is the same for all nodes in
the same ring r. In the following analysis, we assume a polar
coordinate system with the sink located at the origin.

For a node A located at xA = (rA, θA), the relay traffic
arrives from any node B in the infeasible region BA = CA \
FA, where CA is the communication range of A, as shown
in Fig. 3. i.e., BA is the region in which nodes are farther to
the sink but are still in the transmission range. To derive the
relay traffic rate for A and other nodes in ring rA, consider the
small area (rA : rA + ∆r, θ : θ+ ∆θ) around node A located
at (rA, θ). Similar to the deterministic deployment, the relay
traffic rate λrrA is given by

λrrA = λ̄rrA/π
listen
rA ,

λ̄rrA =

∫
BA
ρ(λ̄rxB

+ λl)pfwxB ,xA
pdeli,xB ,xA

dxB

ρ∆r∆θrA
, (24)

where ρ is the network density of the Poisson node distri-
bution, pfwxB ,xA

and pdeli,xB ,xA
are similarly defined as pfwm,i

and pdeli,m,i in (21), except that the nodes are indexed by
their locations. Finally, pfwxB ,xA

in (24) is the routing protocol-
specific probability that the node at xB transmit packets to
a node at xA. A case study for the anycast protocol will
be provided in Section VII to show how this probability is
obtained.

According to (24), the traffic rate of node A at each state is
determined. Accordingly, the input traffic rate vectors λI and
λC of node A can be found according to Section IV. Then,
the equilibrium state probability for the DTMC {Xn}, πrA is
obtained. Note that in (24), the traffic rate for nodes in ring rA
depends on the traffic rate and delivery rate for nodes in their
infeasible region. Therefore, the single-hop delay distribution
is obtained first for nodes in the outmost ring, and then, for
nodes in the inner rings in the decreasing order of the ring
radius.

By symmetry, the end-to-end delay distribution to the sink
is the same for all nodes with a same distance rA to the sink,
and is obtained by

fe(rA)(t) =

∫
FA

pfwxA,xB
fsh(rA) ∗ fe(rB)(t)dxB . (25)

The end-to-end delay distribution is found in the ascending
order of the distance to the sink.

Next, in Section VI, the TinyOS CSMA protocol is used as
a case study to show how the DTMCs, specifically, the single
transmission attempt block {Zn}, are constructed, and how
the end-to-end delay distribution is obtained, in a deterministic
deployed network. Likewise, another case study of the anycast
protocol is provided in Section VII to illustrate the end-to-end
delay analysis in a randomly deployed network.

VI. CASE STUDY: TINYOS CSMA/CA PROTOCOL

In this section, we illustrate how single-hop delay distri-
bution can be obtained for a particular MAC protocol in
a deterministically deployed network. We use the TinyOS
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Fig. 4. Markov chain structure for each attempt for TinyOS CSMA protocol.
NIB and NCB are the number of states representing the initial backoff and
congestion backoff, respectively. The subscript i for node i is omitted in the
figure.

default CSMA/CA protocol [32], which is widely adopted
by applications due to the popularity of TinyOS. Similar to
the IEEE 802.15.4 protocol [1], a two-slot Clear Channel
Assessment (CCA) is conducted before transmitting a packet.
As discussed in Section II, there exist several studies that
characterize the CSMA/CA protocol in a broadcast network.
In this section, we refer to the framework in [28] for our
analysis. Since multi-hop traffic and the hidden node problem
are not considered in [28], we extend this analysis to the multi-
hop case. Note that our aim in this section is not to propose
yet another analysis of the CSMA/CA protocol. Instead, we
illustrate how the existing models of MAC protocols can be
extended through our framework to model the end-to-end
delay distribution.

A. Markov Process Overview

With the TinyOS CSMA/CA protocol, nodes can start
transmission at any time when a packet arrives. Therefore, the
idle layer {In} contains only one state, denoted here as Sidle.
The elements in PI , αI , tsI and λI are easily determined:

PI = {0}, αI = {1}, tsI = {1}, λI = {λr + λl}. (26)

Moreover, the Markov chain, {Zn}, that models each trans-
mission attempt is depicted in Fig. 4. Before each trans-
mission, the packet in the queue is transferred from the
microcontroller to the transceiver. The time needed for such
transfer differs for various transceivers but is not negligible.
Our experiments with TelosB nodes suggest that the durations
of loading time before and after radio transmission are constant
and are approximately 1.7 ms and 2.0 ms, respectively. There-
fore, the data transfer delay is modeled by two additional state
chains with a length corresponding to the transfer duration.
These chains are the first and the last part of {Zn}, denoted
as {TXn} and {RXn} in Fig. 4.

After the packet is transferred to the transceiver, a random
initial backoff is conducted to arbitrate with other nodes. Then,
the two-slot CCA is performed, which is followed by the
packet transmission if both CCAs result in a clear channel. If
the channel is busy, a random congestion backoff is conducted
and the channel is sensed again. After the transmission is
completed, the node waits for the acknowledgment from the
receiver until ACK timeout.

B. Constructing the DTMC {Xn}
For each transmission attempt, the corresponding block of

the Markov chain is depicted in Fig. 4, which is characterized
by three variables in the chain: p1i and p2i are respectively the
probabilities that the node senses the channel busy in the first
and second CCA, and pfi is the probability that a transmission
attempt fails due to either channel noise or collisions. For
the derivations of their values, we first define the collision
area, Ci, of a node i as the area in which all the neighbors
interfere with node i. For two communicating nodes i and
j, both nodes reside in the intersection of the collision areas
of these nodes, i.e., {i, j} ∈ Ci,j 4, where Ci,j = Ci ∩ Cj .
Moreover, the collision area of i that is not in Ci,j is defined
as Hi,j = Ci \ Ci,j , which is the hidden node area of i with
respect to j. Essentially, nodes that reside in Hi,j cannot be
heard by j. Similarly, the hidden node area of j w.r.t. i is
denoted as Hj,i. The size of these areas |Ci,j |, |Hi,j |, and
|Hj,i| can easily be obtained according to the distance between
i and j and their respective interference ranges. Accordingly,
the number of nodes in these areas are the product of their
respective sizes and the network density ρ.

pncCi
= 1−

∑
k∈Ci

pwk
psend,Ci

. (27)

Then, the values of p1i , p2i and pfi for each node i are found
by solving the following set of equations.

p1i =psendCi
LTX + packi LACK , (28)

p2i =

1−
2− pcCi

2− pcCi
+ 1

1−
∏

k∈Ci
(1−φk)

 (1−
∏
k∈Ci

(1− φk))

+
1− pcCi

2− pcCi
+ 1∏

k∈Ci
(1−φk)

, (29)

pfi,j =1−
pwi (1− pcollhidi,j )(1− PERi,j)

φi(1− p1i )(1− p2i )
, (30)

where psendCi
is the probability with which at least one node

k ∈ Ci begins a transmission, LTX and LACK are respectively
the duration of a data packet transmission and an ACK
transmission in terms of time units, packi is the probability that
an ACK packet is transmitted by at least one node in Ci during
a time unit, pcCi

is the probability that given a transmission was
going on, a collision is observed on the channel in a given time
unit, pwi is the probability that only node i starts to transmit
a packet in a given time unit, and pcollhidi,j is the probability
of collision due to hidden terminal transmissions. They are
obtained by (25), (27), (28), (30), and (31) in [34]. Moreover,
φi is the probability that node i is in the first CCA state and
is given in πi, the stationary probability vector for node i; p1i
and p2i are the probability that the node senses the first and the
second CCA busy, respectively. Note that since heterogeneous
network traffic is considered, φi may be different for different
nodes. Finally, PERi,j is the packet error rate dependent on

4With a slight abuse of notation, in the following, i ∈ C is used to indicate
node i resides in area C.
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channel noise, which depends on the transmission distance,
transmission power, random multi-path and shadowing effects.
In our model, we define the expected packet reception rate for
a pair of nodes according to the log-normal fading model in
[39].

Also note that pfi,j is averaged among all destinations, j,
as the approximation of pfi for each node i. As suggested
in (30), the value of pfi,j depends on the channel conditions
and the collision probability. Considering a channel-aware
routing protocol is employed, pfi,j does not vary significantly
for different node pairs and such approximation is acceptable.
Accordingly, for a given node i, the failure probability for
each transmission attempt, pfi , is the same for all packets in
the queue.

The three probability values, p1i , p2i , and pfi are then used to
construct the Markov chain, {Zn}, as follows. First, the states
in {Zn} are given an index in an arbitrary order. Then, the
following matrices and vectors are determined:

• The (v, v′)-th element in PZ is equal to the transition
probability from state v to v′.

• The element in αZ corresponding to the first state in
{TXn} (as shown in Fig. 4) is 1. Other elements are 0’s.

• The element in tsZ corresponding to the last state in
{RXn} is 1, and the element in tfZ corresponding to the
last state for ACK timeout is 1. Other elements are 0’s.

• The elements in λZ corresponding to the transmission
states are λl and other elements are λl + λr.

Each of these values depends on each other as well as
φi, which is the probability that the node i is in the first
CCA state. Note that φi, p1i and p2i cannot be determined
without the knowledge of πi, which can only be obtained
after constructing the Markov chain as explained in Section
IV. Consequently, an iterative procedure is used to find these
parameters. First, initial guesses of φj , p1i and p2i , which are
set to all 0’s in our evaluation, are used to construct the
Markov chains for each node. Based on the Markov chains,
πi is calculated. Then, values for φi, p1i and p2i are updated
accordingly to the knowledge of πi. The calculation of φi, p1i ,
p2i , and πi is conducted iteratively, until the difference of the
value for any variable between two iterations is negligible.

After {Zn} is constructed, the entire DTMC {Xn} is
obtained according to Section IV. The single-hop delay distri-
bution is then derived by Theorem 1. Finally, the end-to-end
delay distribution is found according to (23). The results are
described in Section VIII-A.

VII. CASE STUDY: ANYCAST PROTOCOL

In this section, the approach for computing single-hop and
end-to-end delay distributions is illustrated for an anycast
protocol. The anycast technique has been widely adopted in
WSNs recently [17, 22, 33]. Since there is no dominantly used
anycast protocol, in this paper, we model the representative
protocol described below. This case study is used to show how
the single-hop and the end-to-end delay analysis in Section
IV and Section V can be applied to protocols with duty
cycle operations for a randomly deployed network. Other

anycast protocols, and more generally, other duty cycle-based
protocols, can be modeled using similar approaches.

For the random deployment of nodes, the topology model
in Section V-B is considered, and node-specific variables are
indexed by the ring radius r. In the following analysis, when
there is no ambiguity, the subscript r in ring-specific variables
is omitted.

In the anycast protocol, sensor nodes report their readings
to the sink, located at the center of the circular plane, through
multi-hop routes in the network. The nodes (excluding the
sink) turn off their radio periodically to save energy. We
assume that the waking period in a sleep-wake cycle T c for
each node is Tw, and the sleeping period is T sl. When a node
A has a packet to send, it starts to repeatedly transmit RTS
beacon packets based on a CSMA/CA manner, i.e., through
carrier sense and random backoff mechanisms. When a node
B in the transmission range is awake and hears the packet,
it checks for the following criteria: (1) node B is closer to
the sink than A, and (2) the signal-to-noise ratio (SNR) of
the received RTS packet, ψ, is greater than some predefined
threshold ψth. If both criteria are met, node B sends a CTS
packet. Node A then chooses the first node that sent a CTS
packet as the next-hop node and transmits the data packet to it.
Successful data packet transmissions are acknowledged by the
receiver, otherwise the sender retransmits the data packet until
successful, or the maximum number of transmission attempts,
χ, is reached.

To reduce the waiting time for the packets spent in the queue
and balance the energy consumption in the network, in the
protocol, each node responds to beacon packets only when it
does not have packets to send. Considering the sink is awake
all the time, if a node closer than a distance threshold rth to
the sink transmits beacons, it is assumed that no node except
the sink will respond. Here rth is chosen such that a high
SNR is almost always guaranteed. Moreover, nodes go to sleep
when they finish transmitting all packets in the queue. As a
result, compared to non-transmitting nodes, the active period
is shorter. In cases where transmission energy consumption is
significantly higher than listening, this helps balancing energy
consumption among nodes.

We first show the DTMC {Xn} for the protocol. Then,
the protocol-specific parameters for the generic analysis in
Section IV, including the relay traffic rate at each state, and
the transition probabilities for {Xn} are derived. The single-
hop delay distribution for each pair of nodes is obtained after
these parameters are known. Finally, the end-to-end delay
distribution from each node to the sink is provided.

A. Markov Process Overview

The anycast protocol is modeled according to a DTMC
{Xn} discussed in Section IV. The structures of the idle
layer {In} and one of the communication layers {Cn} for this
protocol are shown in Fig. 5(a) and Fig. 5(b), respectively. The
process enters {In} periodically when there is no packet to
send. {In} consists of a group of sleeping states and listening
states. During the listening states, the node listens to the chan-
nel. Thus, both locally generated packets and relay packets can
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Fig. 5. The Markov chain structure of (a) the communication process, {Cn},
and (b) the idle process, {In}, for the anycast protocol.

arrive. During the sleeping states, however, the node turns off
its transceiver and therefore only local packets can arrive. The
number of states in {In} is Lc = T sl/Tu+Tw/Tu = T c/Tu,
where Tu is the unit time. A large Tu can reduce the number
of states in the DTMC, thus reducing computation cost for
the model, but at the cost of reducing the granularity and
accuracy of the result.5 When a local or relay packet arrives,
the node terminates the idle process and begins the first layer
of communication process.

In each communication layer, which consists of a {Cn}
block, the node keeps transmitting beacon packets. The num-
ber of states in {Cn} is Lb = T b/Tu, where T b is the beacon
timeout. If a node receives RTS responses from other nodes, it
starts transmitting the data packet to the first responding node.
Retransmissions are conducted in case of a transmission fail-
ure. Since only neighbor nodes that receive the beacon packets
with a high SNR will response, a high quality wireless channel
is guaranteed. Moreover, in most WSN applications, the traffic
rate is low, and the chance of packet collision with other nodes
is small. Therefore, data packets are transmitted successfully
in limited number of (re)transmission attempts, which takes
negligible time compared to the sleeping cycle T c (usually
longer than 10sec). Thus, {Cn} only contains transmission
states. When the first RTS packet is received, the transmission
terminates in a success. When the beacon transmission times
out, the packet is dropped, and the transmission terminates in a
failure. In either way, the node enters the lower layer. Note that
the beacon timeout T b is usually chosen equal to or longer than
the cycle T c. This is to ensure that each neighbor node can
receive the beacon messages within their duty cycle period.
The entire beacon transmission process before packet delivery
or timeout is regarded as a single transmission attempt. Thus,
each communication layer {Cn} contains only one block of
{Zn}.

B. Constructing the DTMC {Xn}
Unlike the TinyOS CSMA protocol with which there is only

a single state in {In}, to capture the duty cycle operation in the
anycast protocol, a series of states are needed. The transition
probabilities in {In} and {Cn} are 1’s when not noted. The
transition probabilities pnrrA(i), and the traffic rate λI , λC are
explained in the following.

In the ith time unit in {Cn}, a node A in ring rA has a
probability of pnrrA(i) of not receiving any CTS response, and

5Recall in Section IV that it is assumed only one packet may arrive in a
time unit. This is accurate only when Tu is chosen small.

enters the next state. If in all Nm states, node A receives no
CTS response, the transmission fails and the packet is dropped.
On the other hand, if in any of the states, a CTS response is
received, the node transmits the packet and the transmission
succeeds. The probability pnrrA(i) is the conditional probability
that given the transmissions in the previous i−1 states failed,
the transmissions in the ith state still fails. For simplicity the
hidden terminals are ignored. Hidden terminal effects in high
density networks can be easily captured by the model as shown
in Section VI. Therefore,

pnrrA(1) = pnrrA(1∼1)

pnrrA(i) = pnrrA(1∼i)/p
nr
rA(1∼i−1), 2 ≤ i ≤ Lbr (31)

where pnrrA(1∼i) is the probability that during all first i states
in {Cn}, beacon transmission fails, since no CTS packet is
received in these states. Therefore,

pnrrA(1∼i) =
∏

xB∈FA

(
1− ρ∆rB∆θBp

ol
rB(i)p

SNR
A,B

)
, (32)

where node (x)B = (rB , θB) is any location in the feasible
region of A; ρ is the node density; polrB(i) is the probability
that the waking period of a node B, which is located rB away
from the sink, overlaps with the first i beacon transmission
time units of A, and is given by (28) in [35]. Moreover, pSNRA,B

is the probability that a packet, which is transmitted by node
A and received by a node located at xB , has an SNR higher
than some predefined threshold ψth. It is obtained by (10) in
[39]. Then, pnrrA(1∼i) in (32) can be determined, and pnrrA(i) in
(31) is obtained using (32).

Next, the traffic rate at each state, λI and λC , are discussed.
The arriving traffic at A contains locally generated and relay
traffic. In sleeping states, the traffic arrival rate is λlrA . In
listening states, the traffic rate is λrrA + λlrA . Finally, in the
beacon transmission states, since nodes are assumed not to
respond to any relay packets, the traffic rate is λlrA . The value
of λrrA , is obtained according to (24). The protocol-specific
probabilities, pfwxB ,xA

are derived in the following.
The probability that a node A located at xB forwards a

packet to a node B located at xA, among all possible forward
targets, pfwxB ,xA

, is proportional to the probability that A is
available when B transmits a beacon, and is normalized on
the total availabilities for all possible nodes. The availability
is defined as

pavailxB ,xA
= pepwakerA pSNRxB ,xA

, (33)

where pwakerA =
∑Lw

j=1 π
Wj
rA is the probability that node A is

awake, and πWj
rA is the equilibrium probability that A is in the

jth waking state in {Xn}. Then, pfwxB ,xA
in (24) is given by

pfwxB ,xA
=

pavailxB ,xA∫
FB
pavailxB ,xC

dxC
, (34)

where xC = (rC , θC), is any location in FB .
Accordingly, {In} and {Cn} (containing only one block of

{Zn}) are characterized by:
• The (v, v′)-th element in PI and PC is the transition

probability from state v to v′ shown in Fig. 5.
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• The element in αI and αC is 1 for states pointed by a
“begin” arrow. Other elements are 0’s.

• The element in tsI , tsC , and tfC is set according to the
probability attached to the arrows pointing to “success”
and “fail”, respectively.

• The elements in λI corresponding to the sleeping states
are set to λl. Other elements in λI and λC are set to
λl + λr.

Consequently, the single-hop delay distribution and end-to-
end delay distribution for each ring are respectively obtained
according to (17) and (25).

In the following section, we use empirical evaluations to
validate the analytical model for both protocols.

VIII. ANALYTICAL RESULTS AND EMPIRICAL
VALIDATIONS

The end-to-end delay distribution model has been evaluated
using MATLAB to determine the single-hop and multi-hop
delay distributions for the TinyOS CSMA/CA MAC protocol
(Section VI) and the anycast protocol (Section VII). The com-
puting environment is a PC with a Xeon 5150 CPU working
at 2.66GHz and 2G RAM. Moreover, empirical experiments
and TOSSIM based simulations [20] have been conducted on
our WSN testbed to validate the results. The simulations are
conducted in the same PC environment. For the empirical
validations, Crossbow TelosB motes with a data rate of 250
kbps are used. The packet size is lp = 39 bytes. Each node
i generates local traffic to be sent to sink s according to a
Poisson distribution with rate λl(i,s). Our experiments with the
TelosB motes suggest that it requires on the average 1.7 ms to
transfer each packet from the MCU to the RF transceiver and
2.0 ms vice versa. The transmission power is set to -15dBm
for all the experiments unless otherwise stated.

In the experiments, the single-hop delay and end-to-end
delay are measured as follows: When the source node gen-
erates a packet, it simultaneously sends an electric pulse to
the destination node through a pair of wires. The destination
node starts a timer when it receives the pulse, and waits for the
packet. When the packet is received by the destination node,
the duration after the reception of the pulse is recorded as
the packet delay. This eliminates the need for synchronization
among all the nodes. Next, we present the evaluation results
for TinyOS CSMA/CA protocol and the Anycast protocol in
Section VIII-A and Section VIII-B, respectively.

A. Experiments for TinyOS CSMA/CA MAC protocol

1) Single-hop Delay Distribution: First, the single-hop de-
lay distribution of the TinyOS CSMA/CA protocol is evaluated
according to the derivations in Section VI. The time unit is set
to Tu = 320µs. The maximum initial backoff and congestion
backoff durations are set to 9.77 ms and 2.44 ms, respectively.
For the evaluations, a single hop network is considered where
the delay distribution is found for a node under the contention
from neighbor nodes. Three different network configurations
are considered for the evaluations.

In the first configuration, a node continuously transmits
locally generated packets to a receiver node with a data rate of
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Fig. 6. The cdf of the single hop delay of the CSMA/CA protocol. Both
empirical (emp) and analytical (ana) results are shown.

2 packets per second. This corresponds to λl = 6.4× 10−4 in
the analytical model. Four other nodes are used to transmit
packets at the same rate to create background traffic for
contention. In the second case, the packet rate for all 5 nodes
is increased to 10 packets per second. For the third case, two
additional nodes with the same packet generation rate are used,
but are placed so that they act as hidden terminals for the
transmitting node. The single hop delay for 5, 000 packets is
recorded for each experiment.

The results of both analytical and empirical validations are
shown in Fig. 6 for the cdf of the delay. The results show that
a higher traffic rate increases hop delay, which is also captured
by our model. In addition, the two hidden nodes introduced
in the third case cause heavy contention and further increase
the hop delay. It can be observed that the analytical model
accurately captures the effects of hidden nodes. For all cases,
the analytical model has less than 2% of error compared to
the empirical evaluations.

In our computing environment with a Xeon 5150 CPU
working at 2.66GHz and 2G RAM, the calculations run for
less than 10 seconds for a typical hop with 6 neighbors, with
χ = 3 and M = 5 for all nodes, while empirical experiments
take more than 5 minutes to obtain enough data samples for
meaningful delay distribution estimation.

2) End-to-end Delay Distribution: To validate the model
for multi-hop networks and illustrate the effects of network
parameters in WSNs, two sets of experiments have been
performed. First, a network consisting of 25 TelosB nodes are
used. The nodes are placed in a 5×5 grid, as illustrated in Fig.
7(a). Nodes shown as light-colored boxes only relay packets
while the 8 dark-colored nodes also generate packets according
to a Poisson process. The transmit power for every node is
−25 dBm. The generated traffic rate for the 8 nodes, λl, the
queue length, M , and the maximum number of transmission
attempts, χ are varied to reveal the relationships between each
of the parameters and the end-to-end delay distribution. End-
to-end delay is measured for approximately 3, 000 packets for
each configuration.

The results are shown in Fig. 7(d). As can be observed, the
cdf of the analytical model match well with the empirical
results with an error less than 5%. The slight difference
in these results is partially due to the inaccurate collision
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Fig. 7. The topology and the end-to-end delay distribution for the multi-hop grid experiments (a, d) and the testbed experiments (b, e). The end-to-end delay
distribution of the Anycast protocol are also shown in (c) and (f).

models, since the collision range in practice is not an arbitrary
area for each node and a transitional area exists around the
boundary [39]. The results suggest that heavier traffic leads
to a longer end-to-end delay and a lower reliability as can be
observed from the asymptotic value of the cdf. In addition, by
reducing the queue length, M , and the maximum number of
transmission attempts, χ, the reliability decreases. However,
when a low delivery rate (e.g., less than 50%) is sufficient, a
lower M or χ does not largely affect the delay performance.
More specifically, the average waiting time can be reduced by
decreasing the queue capacity and the chance of collisions is
decreased since less retransmissions are allowed. This fact is
useful when designing applications with nodes having limited
memory space.

Experiments are also performed in a realistic indoor envi-
ronment. A multi-hop network of 16 TelosB nodes is located
in three rooms as shown in Fig. 7(b). Two different network
configurations are used to illustrated the effects of topology
changes. In both configurations, each node generates Poisson
traffic of 2 packets per second and the packets are forwarded
to the sink as shown in Fig. 7(b). A geographical routing
protocol is used to determine the forwarding routes based
on the distance between each node and the sink. In the first
configuration, every node transmits packets with a power of -
15 dBm and the routes are shown in dashed lines. In the second
configuration, two nodes are selected to transmit packets with
an increased power of -7dBm. Therefore, they can directly
reach the sink. The routes for the second case are shown in
Fig. 7(b) as solid lines. The cdf s of the results are shown
in Fig. 7(e). Accordingly, increasing transmit power in only

two nodes significantly impacts the end-to-end delay as also
captured by the analytical evaluations.

B. Experiments for Anycast Protocol

We first show that the analytical results of the end-to-end
delay distribution are validated by the simulation and the
testbed experiments. The anycast protocol described in Section
VII is implemented in TinyOS 2.0. Our testbed consists of 25
Crossbow TelosB motes. The nodes are randomly placed in a
circular area of radius R = 4.5m. Thus, the density is roughly
ρ = 0.39. The data packet size is lp = 39 bytes, whereas
the beacon message and the CTS response message have the
same size of lm = 22 bytes. Each node generates the same
amount of local traffic to be sent to the sink according to a
Bernoulli process with average rate λl = 0.001 in each time
unit Tu = 0.01sec, which equals to 0.1 packet per second. The
operating cycle of each node is T c = 1 sec, during which the
wake period is Tw = 0.5sec, thus the duty cycle is η = 0.5.
Moreover, the beacon transmission timeout is T b = 1sec. The
transmission power is set to -15dBm for all the nodes. The
threshold radius rth is set to 2.7m, within which all nodes
only transmit packets to the sink. The SNR threshold is set
to ψth = 10dB. The simulation is performed on the same
topology. Both the simulation and the testbed experiment have
been run for 2.5 hours and the end-to-end delay distribution
for a node at distance r = 4.3m is recorded.

The results are compared with analytical prediction from
the model, as shown in Fig. 7(c). It can be observed that the
analytical results agree well with both the simulation result
and the testbed experiment result, and the error is less than
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Fig. 8. The relationship between network parameters and the delivery probability within 3 sec, 6 sec, and 200 sec with the Anycast protocol.

10%. Therefore, the simulation is used in the following to
validate our model in a larger space and time scales, and for
more randomly generated topologies.

In the second set of evaluations, the network radius is
set to 50m, the transmission power is increased to -10dBm.
Accordingly, the threshold distance is changed to rth = 10m.
Moreover, the network density is ρ = 0.1. Durations T c, Tw,
and T b are 10sec, 5sec and 10sec, respectively, and the traffic
rate is 0.01pkt/sec. Other parameters are left unchanged. 20
different topologies are randomly generated according to a
Poisson distribution with the same density. Each topology is
simulated for 1 hour. The end-to-end delay distribution from
all nodes with a distance of 50m to the sink are measured. The
result is shown in Fig. 7(f), along with the analytical results.
It can be observed that the analytical result is also within 10%
of the simulation result.

Next, using the end-to-end delay distribution modeled in
(17), we investigate the relationships between the probability
of achieving a given end-to-end delay and various network
parameters. In each of the following evaluations, the network
density ρ, the duty cycle η for all nodes, and the traffic rate
λl for all nodes are varied, respectively. The default values
for these parameters are 0.02, 0.2, and 0.005pkt/sec. Other
parameters are kept unchanged from the previous experiment.
The network radius is R = 50m.

The probability that the end-to-end delay of a node at
distance r = 50m is smaller than 3 sec, 6 sec, and 200 sec are
shown in Fig. 8. The results in Fig. 8(a) reveal that when the
network density increases, the probability of delivering packets
from the edge to the sink also increases. This is because a
network with a higher density tends to have more available
relaying nodes at any time. Similarly, as shown in Fig. 8(b),
when the duty cycle increases, nodes have more waking time
to relay packets, thus the probability of delivering packets
is increased. Finally, Fig. 8(c) suggests that increasing the
traffic rate increases the queueing delay and decreases the
probability that nodes are ready to relay packets. Therefore,
the probability of delivering packets is smaller as traffic rate
increases. It is important to note that given enough time, e.g.,
200 sec, the delivery probability does not change much when
the duty cycle or the traffic rate varies as shown in Fig. 8(b)
and 8(c). However, in Fig. 8(a), the delivery probability after
200 sec changes greatly when the network density changes.
This is because lower duty cycle and higher traffic rate prolong

the packet waiting time. Given enough time, there are still
enough nodes to relay the packets. On the other hand, a
low network density reduces the number of relaying nodes.
Therefore, eventually more packets are lost due to timeout in
a low density network.

For any network setup in the experiments above, the calcu-
lation for the end-to-end delay distribution during any given
duration takes less than 2 minute. On the other hand, the
TOSSIM-based simulations determine the delay distribution
in the same order of actual time. For example, for a simulated
duration of 2 hours, the simulation takes roughly 30 mins.
Thus, our analytical approach provides insights significantly
faster with the same accuracy.

IX. CONCLUSIONS

Providing QoS guarantees in wireless sensor networks
(WSNs) necessitate a probabilistic approach, where the queu-
ing delay and the effects of wireless channel errors are
captured. In this paper, an end-to-end analysis of the commu-
nication delay is provided. A Markov process based on birth-
death problem is used to model the communication process
in a multi-hop network. The developed model is validated by
extensive testbed experiments through several network config-
urations and parameters. The results show that the developed
framework accurately models the distribution of the end-to-
end delay and captures the heterogeneous effects of multi-
hop WSNs. The developed framework can be used to guide
the development of QoS-based scheduling and communication
solutions for WSNs. Based on the framework, models are also
developed for event detection delay distributions in WSNs
[36].
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